Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.167
1.
Biomed Khim ; 70(2): 109-113, 2024 Apr.
Article En | MEDLINE | ID: mdl-38711410

Aclinical and immunological examination of men with occupational pathology, including vibration disease (VD), occupational sensorineural hearing loss (SHL), and chronic mercury intoxication (CMI), was carried out. The comparison group consisted of men comparable in age and total work experience. Serum concentrations of neurotrophins (S100ß, MBP, BDNF) and antibodies (ABs) to S100ß and MBP proteins were determined by enzyme-linked immunosorbent assay. An increase in the level of the S100ß protein was shown in CMI, VD, and a tendency for its increase was found in SHL. In parallel, an increase in AB to the S100ß protein in VD and SHL and a decrease in AB in CMI were noted. A comparative assessment of MBP levels indicated a pronounced increase in its serum concentrations in patients with CMI and VD versus the comparison group. At the same time, an increase in the level of serum ABs to MBP in individuals with VD and SHL, and a decrease in patients with CMI were noted. In patients with CMI, a significant decrease in the BDNF concentration was found, while in SHL and VD, no statistically significant differences were found in comparison with the comparison group. The results obtained confirm importance of assessing serum concentrations of neurotrophic proteins and ABs to them in the case of occupational damage to the nervous system caused by exposure to physical and chemical factors.


Brain-Derived Neurotrophic Factor , Occupational Diseases , S100 Calcium Binding Protein beta Subunit , Humans , Male , Brain-Derived Neurotrophic Factor/blood , Occupational Diseases/blood , Occupational Diseases/immunology , Adult , Middle Aged , S100 Calcium Binding Protein beta Subunit/blood , Myelin Basic Protein/blood , Myelin Basic Protein/immunology , Hearing Loss, Sensorineural/blood , Autoantibodies/blood , Occupational Exposure/adverse effects
2.
J Chem Inf Model ; 64(8): 3477-3487, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38605537

Allostery is an essential biological phenomenon in which perturbation at one site in a biomolecule elicits a functional response at a distal location(s). It is integral to biological processes, such as cellular signaling, metabolism, and transcription regulation. Understanding allostery is also crucial for rational drug discovery. In this work, we focus on an allosteric S100B protein that belongs to the S100 class of EF-hand Ca2+-binding proteins. The Ca2+-binding affinity of S100B is modulated allosterically by TRTK-12 peptide binding 25 Å away from the Ca2+-binding site. We investigated S100B allostery by carrying out nuclear magnetic resonance (NMR) measurements along with microsecond-long molecular dynamics (MD) simulations on S100B/Ca2+ with/without TRTK-12 at different NaCl salt concentrations. NMR HSQC results show that TRTK-12 reorganizes how S100B/Ca2+ responds to different salt concentrations at both orthosteric and allosteric sites. The MD data suggest that TRTK-12 breaks the dynamic aromatic and hydrogen-bond interactions (not observed in X-ray crystallographic structures) between the hinge/helix and Ca2+-binding EF-hand loop of the two subunits in the homodimeric protein. This triggers rearrangement in the protein network architectures and leads to allosteric communication. Finally, computational studies of S100B at distinct ionic strengths suggest that ligand-bound species are more robust to the changing environment relative to the S100B/Ca2+ complex.


CapZ Actin Capping Protein , Molecular Dynamics Simulation , S100 Calcium Binding Protein beta Subunit , Allosteric Regulation , S100 Calcium Binding Protein beta Subunit/chemistry , S100 Calcium Binding Protein beta Subunit/metabolism , Calcium/metabolism , Humans , Signal Transduction , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Binding , Protein Conformation
3.
Eur Arch Paediatr Dent ; 25(2): 267-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-38649631

PURPOSE: Neurotoxicity concerns have been raised over general anesthesia and sedation medication use in children. Such concerns are largely based on animal studies, historical anesthetic agents, and assessment tools, thus warranting further investigations. Blood biomarkers in detecting neuronal inflammation and apoptosis are novel methods for detecting neuronal damage. Therefore, the aim of this feasibility study was to assess the usefulness of the levels of four plasma biomarkers in dental general anesthesia (DGA) as surrogate markers of neurotoxicity in children. The secondary aim was to compare changes in motor manipulative skills pre- and post-anesthetic exposure. METHODS: This single-center prospective observational study included 22 healthy children aged between 3 and 6 years old who underwent DGA. Subclinical neurotoxicity was measured with a panel of four plasma biomarkers: Caspase-3, neuron-specific enolase (NSE), neurofilament light chain, and S100B at three time points (1; at start, 2; end and 3; on recovery from DGA). The Skillings-Mack test was used to identify the difference in the biomarker levels at three time points. Motor manipulative score assessment, prior and two weeks after DGA was also performed. RESULTS: A total of 22 study participants (mean age = 5 ± 1 years) were included with a median DGA duration of 106 ± 28 min. A reduction in Caspase-3 levels was recorded, with pairwise comparison over three time points, reporting a statistical significance between time point 2 vs. 1 and time point 3 vs. 1. Although fluctuations in NSE levels were recorded, no significant changes were found following pairwise comparison analysis. Among other biomarkers, no significant changes over the three periods were recorded. Furthermore, no significant changes in manipulative motor scores were reported. CONCLUSION: Caspase-3 reduced significantly in the short time frames during day-care DGA; this might be due to the relatively short anesthesia duration associated with dental treatment as compared with more extensive medical-related treatments. Therefore, further studies on Caspase-3 as a potential biomarker in pediatric DGA neurotoxicity are required to further ascertain results of this study.


Anesthesia, Dental , Anesthesia, General , Biomarkers , Caspase 3 , Feasibility Studies , Neurotoxicity Syndromes , Phosphopyruvate Hydratase , S100 Calcium Binding Protein beta Subunit , Humans , Biomarkers/blood , Prospective Studies , Anesthesia, General/adverse effects , Child , Child, Preschool , Caspase 3/blood , Male , Female , Phosphopyruvate Hydratase/blood , Neurotoxicity Syndromes/blood , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/diagnosis , Anesthesia, Dental/methods , S100 Calcium Binding Protein beta Subunit/blood , Neurofilament Proteins/blood
4.
BMC Anesthesiol ; 24(1): 161, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671372

BACKGROUND: This work aimed to analyze serum S100B levels and brain-derived neurotrophic factor (BDNF) in patients with lumbar disc prolapse to test their predictive values concerning the therapeutic efficacy of pulsed radiofrequency. METHODS: This prospective interventional study was carried out on 50 patients candidates for radiofrequency for treating symptomatic lumbar disc prolapse. Pain severity and functional disability were assessed using the Numeric Rating Scale (NRS) and Functional rating index (FRI) before as well as two weeks, 1, 3, and 6 months after the radiofrequency. Quantitative assessment of serum S100B level and BDNF was done for all the included patients one day before radiofrequency. RESULTS: The scores of NRS and FRI were significantly improved at two weeks, 1, 3, and 6 months following radiofrequency (P-value < 0.001 in all comparisons). Statistically significant positive correlations were found between duration of pain, NRS, and S100B serum level before radiofrequency, and both NRS (P-value = 0.001, 0.035, < 0.001 respectively) and FRI (P-value = < 0.001, 0.009, 0.001 respectively) 6 months following radiofrequency. Whereas there were statistically significant negative correlations between BDNF serum level before radiofrequency and both NRS and FRI 6 months following radiofrequency (P-value = 0.022, 0.041 respectively). NRS and S100B serum levels before radiofrequency were found to be independent predictors of NRS 6 months following radiofrequency (P-value = 0.040. <0.001, respectively). CONCLUSION: Serum level of S100B is a promising biomarker that can predict functional outcomes after pulsed radiofrequency in patients with lumbar disc prolapse.


Brain-Derived Neurotrophic Factor , Intervertebral Disc Displacement , Lumbar Vertebrae , Predictive Value of Tests , S100 Calcium Binding Protein beta Subunit , Humans , Brain-Derived Neurotrophic Factor/blood , Male , Female , Prospective Studies , S100 Calcium Binding Protein beta Subunit/blood , Middle Aged , Adult , Intervertebral Disc Displacement/blood , Intervertebral Disc Displacement/surgery , Treatment Outcome , Biomarkers/blood , Pain Measurement/methods , Pulsed Radiofrequency Treatment/methods
5.
Pediatr Rheumatol Online J ; 22(1): 47, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671467

BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most prevalent rheumatic disease in children, and the inflammatory process is widely studied, primarily characterized by its impact on joint health. Emerging evidence suggests that JIA may also affect the central nervous system (CNS). This study investigates the potential CNS involvement in JIA by analyzing the presence of astrocyte-derived extracellular vesicles (EVs) and the S100B protein in plasma, both of which are indicative of astrocyte activity and blood-brain barrier (BBB) integrity. METHODS: EDTA plasma from 90 children diagnosed with JIA and 10 healthy controls, matched by age and gender, was analyzed for extracellular vesicles by flow cytometric measurement. Astrocyte-derived EVs were identified using flow cytometry with markers for aquaporin 4 (AQP-4) and glial fibrillary acidic protein (GFAP). Levels of the S100B protein were measured using a commercial ELISA. Disease activity was assessed using the Juvenile Arthritis Disease Activity Score (JADAS27, 0-57), and pain levels were measured using a visual analogue scale (VAS, 0-10 cm). RESULTS: Our analyses revealed a significantly higher concentration of astrocyte-derived EVs in the plasma of children with JIA compared with healthy controls. Furthermore, children with JADAS27 scores of 1 or higher exhibited notably higher levels of these EVs. The S100B protein was detectable exclusively in the JIA group. CONCLUSION: The elevated levels of astrocyte-derived EVs and the presence of S100B in children with JIA provide evidence of BBB disruption and CNS involvement, particularly in those with higher disease activity. These findings underscore the importance of considering CNS health in the comprehensive management of JIA. Further research is required to elucidate the mechanisms behind CNS engagement in JIA and to develop treatments that address both joint and CNS manifestations of the disease.


Arthritis, Juvenile , Astrocytes , Blood-Brain Barrier , Extracellular Vesicles , S100 Calcium Binding Protein beta Subunit , Humans , Arthritis, Juvenile/metabolism , Arthritis, Juvenile/blood , Child , Male , Blood-Brain Barrier/metabolism , Female , Cross-Sectional Studies , Extracellular Vesicles/metabolism , Astrocytes/metabolism , S100 Calcium Binding Protein beta Subunit/blood , S100 Calcium Binding Protein beta Subunit/metabolism , Adolescent , Case-Control Studies , Child, Preschool , Permeability
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 378-384, 2024 Apr 15.
Article Zh | MEDLINE | ID: mdl-38660902

OBJECTIVES: To dynamically observe the changes in hypoxia-inducible factor 1α (HIF-1α) and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in children with traumatic brain injury (TBI) and evaluate their clinical value in predicting the severity and prognosis of pediatric TBI. METHODS: A prospective study included 47 children with moderate to severe TBI from January 2021 to July 2023, categorized into moderate (scores 9-12) and severe (scores 3-8) subgroups based on the Glasgow Coma Scale. A control group consisted of 30 children diagnosed and treated for inguinal hernia during the same period, with no underlying diseases. The levels of HIF-1α, BNIP3, autophagy-related protein Beclin-1, and S100B were compared among groups. The predictive value of HIF-1α, BNIP3, Beclin-1, and S100B for the severity and prognosis of TBI was assessed using receiver operating characteristic (ROC) curves. RESULTS: Serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in the TBI group were higher than those in the control group (P<0.05). Among the TBI patients, the severe subgroup had higher levels of HIF-1α, BNIP3, Beclin-1, and S100B than the moderate subgroup (P<0.05). Correlation analysis showed that the serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were negatively correlated with the Glasgow Coma Scale scores (P<0.05). After 7 days of treatment, serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in both non-surgical and surgical TBI patients decreased compared to before treatment (P<0.05). ROC curve analysis indicated that the areas under the curve for predicting severe TBI based on serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were 0.782, 0.835, 0.872, and 0.880, respectively (P<0.05), and for predicting poor prognosis of TBI were 0.749, 0.775, 0.814, and 0.751, respectively (P<0.05). CONCLUSIONS: Serum levels of HIF-1α, BNIP3, and Beclin-1 are significantly elevated in children with TBI, and their measurement can aid in the clinical assessment of the severity and prognosis of pediatric TBI.


Beclin-1 , Brain Injuries, Traumatic , Hypoxia-Inducible Factor 1, alpha Subunit , Membrane Proteins , Humans , Male , Female , Brain Injuries, Traumatic/blood , Child , Membrane Proteins/blood , Child, Preschool , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Beclin-1/blood , Prognosis , Proto-Oncogene Proteins/blood , S100 Calcium Binding Protein beta Subunit/blood , Prospective Studies , Infant , Adolescent
7.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685023

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Ferroptosis , Hippocampus , Lipid Peroxidation , Phosphatidylethanolamine Binding Protein , Phospholipid Hydroperoxide Glutathione Peroxidase , Sepsis-Associated Encephalopathy , Ferroptosis/drug effects , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Humans , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Lipid Peroxidation/drug effects , Mice , Male , Female , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/genetics , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/antagonists & inhibitors , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , S100 Calcium Binding Protein beta Subunit/metabolism , S100 Calcium Binding Protein beta Subunit/genetics , Disease Models, Animal , Child, Preschool , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Signal Transduction/drug effects , Child , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Malondialdehyde/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Infant
8.
JAMA Netw Open ; 7(3): e242366, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38502126

Importance: Minor head trauma (HT) is one of the most common causes of hospitalization in children. A diagnostic test could prevent unnecessary hospitalizations and cranial computed tomographic (CCT) scans. Objective: To evaluate the effectiveness of serum S100B values in reducing exposure to CCT scans and in-hospital observation in children with minor HT. Design, Setting, and Participants: This multicenter, unblinded, prospective, interventional randomized clinical trial used a stepped-wedge cluster design to compare S100B biomonitoring and control groups at 11 centers in France. Participants included children and adolescents 16 years or younger (hereinafter referred to as children) admitted to the emergency department with minor HT. The enrollment period was November 1, 2016, to October 31, 2021, with a follow-up period of 1 month for each patient. Data were analyzed from March 7 to May 29, 2023, based on the modified intention-to-treat and per protocol populations. Interventions: Children in the control group had CCT scans or were hospitalized according to current recommendations. In the S100B biomonitoring group, blood sampling took place within 3 hours after minor HT, and management depended on serum S100B protein levels. If the S100B level was within the reference range according to age, the children were discharged from the emergency department. Otherwise, children were treated as in the control group. Main Outcomes and Measures: Proportion of CCT scans performed (absence or presence of CCT scan for each patient) in the 48 hours following minor HT. Results: A total of 2078 children were included: 926 in the control group and 1152 in the S100B biomonitoring group (1235 [59.4%] boys; median age, 3.2 [IQR, 1.0-8.5] years). Cranial CT scans were performed in 299 children (32.3%) in the control group and 112 (9.7%) in the S100B biomonitoring group. This difference of 23% (95% CI, 19%-26%) was not statistically significant (P = .44) due to an intraclass correlation coefficient of 0.32. A statistically significant 50% reduction in hospitalizations (95% CI, 47%-53%) was observed in the S100B biomonitoring group (479 [41.6%] vs 849 [91.7%]; P < .001). Conclusions and Relevance: In this randomized clinical trial of effectiveness of the serum S100B level in the management of pediatric minor HT, S100B biomonitoring yielded a reduction in the number of CCT scans and in-hospital observation when measured in accordance with the conditions defined by a clinical decision algorithm. Trial Registration: ClinicalTrials.gov Identifier: NCT02819778.


Craniocerebral Trauma , Hospitalization , Adolescent , Child , Child, Preschool , Female , Humans , Male , Algorithms , Biological Monitoring , Craniocerebral Trauma/diagnostic imaging , Craniocerebral Trauma/therapy , Prospective Studies , S100 Calcium Binding Protein beta Subunit , Infant
9.
Zhen Ci Yan Jiu ; 49(3): 238-246, 2024 Mar 25.
Article En, Zh | MEDLINE | ID: mdl-38500320

OBJECTIVES: To observe the effect of moxibustion preconditioning on inflammatory response in rats with cerebral ischemia reperfusion injury (CIRI), so as to explore its mechanisms underlying improving CIRI. METHODS: Seventy-five male SD rats were randomly divided into sham operation, model, moxibustion preconditioning 3 days (Moxi 1), moxibustion preconditioning 5 days (Moxi 2) and moxibustion preconditioning 7 days (Moxi 3) groups, with 15 rats in each group. Moxibustion was applied at "Baihui"(GV20), "Dazhui"(GV14) and "Zusanli"(ST36) for 20 min once a day, totally for 3, 5 or 7 days. Thirty minutes after the last moxibustion treatment, the CIRI model was established by occlusion of the middle cerebral artery. The neurological deficit score was assessed by using Longa's method. The infarct size of the brain assessed after staining with 2% triphenyltetrazolium chloride (TTC). The morphological changes of cortical neurons were observed by HE staining. The contents of inflammatory factors interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), S-100ß protein (S-100ß) and neuron-specific enolase (NSE) were detected by ELISA. The expression of phosphatidylinositol-3-kinase (PI3K), p-PI3K, protein kinase B (AKT) and mammalian target of rapamycin (mTOR) proteins in the ischemic cortex tissues were detected by immunohistochemistry and Western blot. RESULTS: Compared with the sham operation group, the neurological function score and the percentage of cerebral ischemic volume were increased (P<0.01). The contents of serum IL-1ß, TNF-α, S-100ß and NSE were significantly increased (P<0.01), while the protein expressions of PI3K, p-PI3K, AKT and mTOR in the cerebral cortex were significantly decreased (P<0.01) in the model group. Compared with the model group, the neurological function score and the percentage of cerebral ischemic volume were significantly decreased (P<0.01). The contents of serum IL-1ß, TNF-α, S-100ß and NSE were significantly decreased (P<0.01), and the expressions of PI3K, p-PI3K, AKT and mTOR proteins in the cerebral cortex were significantly increased (P<0.01) in three moxibustion groups. Compared with the Moxi 1 and Moxi 2 groups, the above indicators were significantly improved in rats of the Moxi 3 group (P<0.01, P<0.05). CONCLUSIONS: Moxibustion preconditioning can significantly improve the neurological function of rats after ischemia-reperfusion, inhibit serum inflammatory factors IL-1 ß and TNF-α, inhibit brain tissue injury markers S-100ß and NSE, which may be related to the activation of PI3K/AKT/mTOR signaling pathway. The protective effect of moxibustion preconditioning for 7 days on CIRI was better than that of 5 days and 3 days.


Brain Ischemia , Moxibustion , Reperfusion Injury , Rats , Male , Animals , Proto-Oncogene Proteins c-akt/genetics , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinase/pharmacology , Tumor Necrosis Factor-alpha/genetics , S100 Calcium Binding Protein beta Subunit/pharmacology , Signal Transduction , Reperfusion Injury/genetics , Reperfusion Injury/therapy , TOR Serine-Threonine Kinases/genetics , Brain Ischemia/genetics , Brain Ischemia/therapy , Cerebral Infarction , Mammals
10.
Brain Res Bull ; 210: 110927, 2024 May.
Article En | MEDLINE | ID: mdl-38485004

Schizophrenia patients have abnormalities in white matter (WM) integrity in brain regions. S100B has been shown to be a marker protein for glial cells. The atypical antipsychotics have neuroprotective effects on the brain. It is not clear whether antipsychotics can induce S100B changes and improve symptoms by protecting oligodendrocytes. To investigate WM and S100B changes and associations and determine the effect of quetiapine on WM and S100B in schizophrenia patients, we determined serum S100B levels with solid phase immunochromatography and fractional anisotropy(FA)values of 36 patients and 40 healthy controls. Patients exhibited significantly higher serum concentrations of S100B and decreased FA values in left postcentral,right superior frontal,right thalamus, and left inferior occipital gyrus, while higher in right temporal cortex WM compared with healthy controls. Following treatment with quetiapine, patients had decreased S100B and higher FA values in right cerebellum,right superior frontal,right thalamus, and left parietal cortex,and decreased FA values in right temporal cortex WM compared with pre-treatment values. Furthermore, S100B were negatively correlated with PANSS positive scores and positively correlated with FA values in the left postcentral cortex. In addition,the percentage change in FA values in the right temporal cortex was positively correlated with the percentage change in the S100B, percentage reduction in PANSS scores, and percentage reduction in PANSS-positive scores. Our findings demonstrated abnormalities in S100B and WM microstructure in patients with schizophrenia. These abnormalities may be partly reversed by quetiapine treatment.


Antipsychotic Agents , Schizophrenia , White Matter , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , White Matter/diagnostic imaging , Quetiapine Fumarate/therapeutic use , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , S100 Calcium Binding Protein beta Subunit
11.
Am J Physiol Cell Physiol ; 326(4): C1080-C1093, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38314727

Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.


Maillard Reaction , Muscle, Skeletal , Mice , Humans , Animals , Aged , Receptor for Advanced Glycation End Products/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Cell Differentiation/physiology , Collagen , Muscle Development , Glycation End Products, Advanced , S100 Calcium Binding Protein beta Subunit
12.
Curr Med Res Opin ; 40(4): 575-582, 2024 04.
Article En | MEDLINE | ID: mdl-38385550

BACKGROUND: Accurate identification of delirium in sepsis patients is crucial for guiding clinical diagnosis and treatment. However, there are no accurate biomarkers and indicators at present. We aimed to identify which combinations of cognitive impairment-related biomarkers and other easily accessible assessments best predict delirium in sepsis patients. METHODS: One hundred and one sepsis patients were enrolled in a prospective study cohort. S100B, NSE, and BNIP3 L biomarkers were detected in plasma and cerebrospinal fluid and patients' optic nerve sheath diameter (ONSD). The optimal biomarkers identified by Logistic regression are combined with other factors such as ONSD to filter out the perfect model to predict delirium in sepsis patients through Logistic regression, Naïve Bayes, decision tree, and neural network models. MAIN RESULTS: Among all biomarkers, compared with BNIP3 L (AUC = .706, 95% CI = .597-.815) and NSE (AUC = .711, 95% CI = .609-.813) in cerebrospinal fluid, plasma S100B (AUC = .729, 95% CI = .626-.832) had the best discrimination performance for delirium in sepsis patients. Logistic regression analysis showed that the combination of cerebrospinal fluid BNIP3 L with plasma S100B, ONSD, neutrophils, and age provided the best discrimination to cognitive impairment in sepsis patients (accuracy = .901, specificity = .923, sensitivity = .911), which was better than Naïve Bayes, decision tree, and neural network models. Neutrophils, ONSD, and cerebrospinal fluid BNIP3 L were consistently the major contributors in a few models. CONCLUSIONS: The logistic regression showed that the combination model was strongly correlated with cognitive dysfunction in sepsis patients.


Delirium , Sepsis-Associated Encephalopathy , Sepsis , Humans , Sepsis-Associated Encephalopathy/diagnosis , Prospective Studies , Prognosis , Bayes Theorem , Biomarkers , Sepsis/complications , Sepsis/diagnosis , Membrane Proteins , Proto-Oncogene Proteins , S100 Calcium Binding Protein beta Subunit
13.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339064

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Oxidative Stress , Protein Aggregates , Oxidation-Reduction , S100 Calcium Binding Protein beta Subunit/metabolism
14.
Nutr Res ; 122: 101-112, 2024 Feb.
Article En | MEDLINE | ID: mdl-38215571

Obesity is a health problem that involves fat accumulation in adipose and other tissues and causes cell dysfunction. Long-chain saturated fatty acids can induce and propagate inflammation, which may also contribute to the brain alterations found in individuals with obesity. Fatty acids accumulate in astrocytes in situations of blood‒brain barrier disruption, such as inflammatory conditions. Furthermore, the increase in tumor necrosis factor-alpha (TNF-α) and S100 calcium-binding protein B (S100B) secretion is considered an essential component of the inflammatory response. We hypothesize that through their action on astrocytes, long-chain saturated fatty acids mediate some of the brain alterations observed in individuals with obesity. Here, we investigate the direct effect of long-chain fatty acids on astrocytes. Primary astrocyte cultures were incubated for 24 hours with myristic, palmitic, stearic, linoleic, or α-linolenic acids (25-100 µM). All saturated fatty acids tested led to an increase in TNF-α secretion, but only palmitic acid, one of the most common fatty acids, increased S100B secretion, indicating that S100B secretion is probably not caused in response to TNF-α release. Palmitic acid also caused nuclear migration of nuclear factor kappa B. Long-chain saturated fatty acids did not alter cell viability or redox status. In conclusion, long-chain saturated fatty acids can alter astrocytic homeostasis and may contribute to brain disorders associated with obesity, such as neuroinflammation.


Palmitic Acid , Tumor Necrosis Factor-alpha , Humans , Palmitic Acid/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Astrocytes/metabolism , Fatty Acids/pharmacology , Fatty Acids/metabolism , Obesity , S100 Calcium Binding Protein beta Subunit/pharmacology
15.
Clin Chem Lab Med ; 62(6): 1109-1117, 2024 May 27.
Article En | MEDLINE | ID: mdl-38290722

OBJECTIVES: Seizures (SZ) are one of the main complications occurring in infants undergoing therapeutic hypothermia (TH) due to perinatal asphyxia (PA) and hypoxic ischemic encephalopathy (HIE). Phenobarbital (PB) is the first-line therapeutic strategy, although data on its potential side-effects need elucidation. We investigated whether: i) PB administration in PA-HIE TH-treated infants affects S100B urine levels, and ii) S100B could be a reliable early predictor of SZ. METHODS: We performed a prospective case-control study in 88 PA-HIE TH infants, complicated (n=44) or not (n=44) by SZ requiring PB treatment. S100B urine levels were measured at 11 predetermined monitoring time-points from first void up to 96-h from birth. Standard-of-care monitoring parameters were also recorded. RESULTS: S100B significantly increased in the first 24-h independently from HIE severity in the cases who later developed SZ and requested PB treatment. ROC curve analysis showed that S100B, as SZ predictor, at a cut-off of 2.78 µg/L achieved a sensitivity/specificity of 63 and 84 %, positive/negative predictive values of 83 and 64 %. CONCLUSIONS: The present results offer additional support to the usefulness of S100B as a trustable diagnostic tool in the clinical daily monitoring of therapeutic and pharmacological procedures in infants complicated by PA-HIE.


Asphyxia Neonatorum , Hypothermia, Induced , S100 Calcium Binding Protein beta Subunit , Seizures , Humans , S100 Calcium Binding Protein beta Subunit/urine , Seizures/urine , Seizures/diagnosis , Seizures/drug therapy , Male , Infant, Newborn , Female , Case-Control Studies , Prospective Studies , Asphyxia Neonatorum/urine , Asphyxia Neonatorum/therapy , Asphyxia Neonatorum/complications , ROC Curve , Hypoxia-Ischemia, Brain/urine , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/diagnosis , Phenobarbital/therapeutic use , Infant , Biomarkers/urine
16.
Int J Cardiol ; 400: 131787, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38242506

BACKGROUND: The more severe the acute stroke is, the more serious myocardial damage is. This study aimed to determine the relationship between myocardial work and S100ß, a quantitative biomarker of active cerebral lesions, in patients with acute ischemic stroke (AIS). METHODS: A total of 63 patients with AIS were examined by myocardial work echocardiography, 4D echocardiography with the measurement of left ventricular (LV) myocardial work, volume and function within 24-48 h of symptom onset, respectively. Their plasma S100ß was measured from a peripheral blood sample within 2-6 h of symptom onset. RESULTS: Patients with elevated S-100ß level had significantly increased ratios of peak early diastolic transmitral filling velocity to peak early diastolic lateral mitral annulus tissue velocity(E/e') and global longitudinal strain (GLS), and significantly reduced global work index(GWI) and global constructive work (GCW) compared with those with normal S-100ß level (p < 0.05). S-100ß positively correlated with E/e'(r = 0.878, p < 0.0001) and GLS (r = 0.511, p = 0.002) but negatively correlated with GWI(r = -0.409, p = 0.034) and GCW(r = -0.353, p = 0.041). S-100ß showed an excellent ability to differentiate if a reduced GWI [cut-off value, 120.79 pg/mL; area under receiver operating characteristic curve (AUC), 1.000; sensitivity, 100%; specificity, 100%], GCW (cut-off value, 120.79 pg/mL;AUC,1.000; sensitivity,100%; specificity, 100%) and an increased E/e' (cut-off value, 91.1 pg/mL;AUC,0.913; sensitivity,80%; specificity, 100%) or not, but poor ability to differentiate if an increased GLS(cut-off value, 91.1 pg/mL; AUC,0.576; sensitivity,63.64%; specificity, 83.33%) or not. CONCLUSION: S-100ß level is closely associated with LV function. It is highly competent in determining an impaired myocardial work in patients with AIS.


Ischemic Stroke , Ventricular Dysfunction, Left , Humans , S100 Calcium Binding Protein beta Subunit , Stroke Volume , Ventricular Function, Left
17.
Front Biosci (Landmark Ed) ; 29(1): 37, 2024 01 19.
Article En | MEDLINE | ID: mdl-38287823

Human health is seriously endangered by spontaneous intracerebral hemorrhage (ICH) and aneurysmal subarachnoid hemorrhage (aSAH). Because the majority of ICH and aSAH survivors experience disability, increased risk of stroke recurrence, cognitive decline, and systemic vascular disease, ICH and aSAH assume special importance in neurological disease. Early detection and prediction of neurological function and understanding of etiology and correction are the basis of successful treatment. ICH and aSAH cause complex inflammatory cascades in the brain. In order to establish precise staging and prognosis, as well as provide a basis for treatment selection and monitoring, it is imperative to determine appropriate biological markers according to pathological and physiological mechanisms. In this review, we focus on the research progress of S100B, an endogenous danger signaling molecule, as a potential biomarker for ICH and aSAH, assisting in the development of further basic research and clinical translational studies.


Stroke , Subarachnoid Hemorrhage , Humans , Cerebral Hemorrhage , Risk Factors , Biomarkers , S100 Calcium Binding Protein beta Subunit
18.
Injury ; 55(3): 111313, 2024 Mar.
Article En | MEDLINE | ID: mdl-38219558

OBJECTIVE: The biomarker S100B is a sensitive biomarker to detect traumatic intracranial injury in patients mild traumatic brain injury (mTBI). Higher blood values of S100B, resulting in lower specificity and decreased head computed tomography (CT) reduction has been regarded as one of shortcomings in patients over 65 years of age. The purpose of this study was to assess the accuracy of plasma S100B to detect intracranial injury in elderly patients with mTBI. METHODS: A posthoc analysis was performed of a larger prospective cohort study. Previous recorded patient variables and plasma values of S100B from patients with mTBI who presented to the Emergency Department (ED) within 6 h of injury, underwent a head CT and had a blood sample drawn as part of their routine clinical care, were partitioned at 65 years of age. Sensitivity, specificity, negative predictive value, and positive predictive value of plasma S100B for predicting traumatic intracranial lesions on head CT, with a cut-off set at 0.105 µg/L, were calculated. Results were compared with data from an additional systematic review on the accuracy of S100B to detect intracranial injury in elderly patients with mTBI. RESULTS: Data of 240 patients (48.4 %) of 65 years or older were analyzed. Sensitivity and NPV of S100B were 89 % and 86 % respectively, which is lower than among younger patients (both 97 %). The specificity decreased stepwise with older age: 22 %, 18 %, and 5 % for the age groups 65-74, 75-84, and ≥ 85 years old, respectively. The meta-analysis comprised 4 studies and the current study with data from 2166 patients. Pooled data estimated the sensitivity of s100B as 97.4 % (95 % CI 83.3-100 %) and specificity as 17.3 % (95 % CI 9.5-29.3 %) to detect intracranial injury in elderly patients with mTBI. CONCLUSION: The biomarker S100B at the routine threshold has a limited clinical value in the management of elderly mTBI patients mainly due to a poor specificity leading to only a small decrease in head CTs. Alternate cut-off values and combining several plasma biomarkers with clinical variables may be useful strategies to increase the accuracy of S100B in (subgroups of) elderly mTBI patients.


Brain Concussion , Craniocerebral Trauma , Humans , Aged , Aged, 80 and over , Brain Concussion/diagnostic imaging , Prospective Studies , Predictive Value of Tests , Biomarkers , S100 Calcium Binding Protein beta Subunit
19.
EBioMedicine ; 100: 104955, 2024 Feb.
Article En | MEDLINE | ID: mdl-38171113

BACKGROUND: Cancer treatment with immune checkpoint inhibition (ICI) can cause immune-related adverse events in the central nervous system (CNS irAE). There are no blood biomarkers to detect CNS irAE. We investigated if concentrations of S100-calcium-binding protein B (S100B) and neurofilament light chain (NfL) in blood can be used as biomarkers for CNS irAE and assessed the incidence of CNS irAE in a cohort of ICI-treated patients. METHODS: In this single-centre, retrospective cohort study, we examined medical records and laboratory data of 197 consecutive patients treated with combined CTLA-4 and PD-1 inhibition (ipilimumab; ipi + nivolumab; nivo) for metastatic melanoma or renal cell carcinoma. CNS irAE was diagnosed using established criteria. Concentrations of S100B and NfL in blood were measured in patients with CNS irAE and in 84 patients without CNS irAE. FINDINGS: Nine of 197 patients (4.6%) fulfilled criteria for CNS irAE. S100B and NfL in blood increased during CNS inflammation and normalized during immunosuppression. CNS irAE was detected with a sensitivity of 100% (S100B) and 79% (NfL) and a specificity of 89% (S100B) and 74% (NfL). Patients with CNS irAE had simultaneous increased concentration of C-reactive protein (CRP) (9/9) and alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) in blood (8/9). INTERPRETATION: Analysis of S100B, NfL and CRP in blood facilitates the diagnosis of CNS irAE. CNS irAE may be more common than previously reported. There may be shared immune mechanisms between CNS and hepatitis irAE. FUNDING: Supported by funding from the Swedish Cancer Foundation, the ALF-agreement, and Jubileumsklinikens Cancerfond.


Intermediate Filaments , Melanoma , Humans , Retrospective Studies , Biomarkers , Nivolumab , Central Nervous System , Inflammation , S100 Calcium Binding Protein beta Subunit
20.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38255850

The S100B protein is abundant in the nervous system, mainly in astrocytes, and is also present in other districts. Among these, the adipose tissue is a site of concentration for the protein. In the light of consistent research showing some associations between S100B and adipose tissue in the context of obesity, metabolic disorders, and diabetes, this review tunes the possible role of S100B in the pathogenic processes of these disorders, which are known to involve the adipose tissue. The reported data suggest a role for adipose S100B in obesity/diabetes processes, thus putatively re-proposing the role played by astrocytic S100B in neuroinflammatory/neurodegenerative processes.


Diabetes Mellitus , Humans , Obesity , Adiposity , Adipose Tissue , Astrocytes , S100 Calcium Binding Protein beta Subunit
...